Pathways for the Development of Organic Rare Natural Animal Fibre Production

RIRDC Publication No. 09/163
Pathways for the Development of Organic Rare Natural Animal Fibre Production

by B.A. McGregor

January 2010

RIRDC Publication No 09/163
RIRDC Project No. PRJ- 002521
Pathways For The Development Of Organic Rare Natural Animal Fibre Production
Publication No. 09/163
Project No. PRJ-002521

The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances.

While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication.

The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.

The Commonwealth of Australia does not necessarily endorse the views in this publication.

This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to the RIRDC Publications Manager on phone 02 6271 4165.

Researcher Contact Details

Dr. Bruce McGregor
Centre for Material and Fibre Innovation
Institute for Technology Research and Innovation,
Deakin University
GEELONG, Victoria 3217, Australia.

Phone: 03 52 273 358
Fax: 03 52 272 539
Email: bruce.mcgregor@deakin.edu.au

In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form.

RIRDC Contact Details

Rural Industries Research and Development Corporation
Level 2, 15 National Circuit
BARTON ACT 2600

PO Box 4776
KINGSTON ACT 2604

Phone: 02 6271 4100
Fax: 02 6271 4199
Email: rirdc@rirdc.gov.au.
Web: http://www.rirdc.gov.au

Electronically published by RIRDC in January 2010
Print-on-demand by Union Offset Printing, Canberra at www.rirdc.gov.au
or phone 1300 634 313
The long-term sustainability of the rare natural animal fibre industries is of considerable importance to both the production industries and for economic and social benefits generated by value-adding processing of rare animal fibres in Australia. The world organic textile market is currently valued at over $5 billion and growing at 20% compound annually. Australian farmers, processors and exporters do not have access to existing information or potentially available information on pathways for organic rare animal fibre production. This report reviewed available information on organic production relevant to rare natural animal fibres and found:

- There is a lack of reliable and clear information on production issues and market signals in the organic wool markets and no information on organic rare natural animal fibre markets;
- Few farmers are engaged in organic rare natural animal fibre production;
- Industry associations and processors need to engage in a long-term strategy to attract producers to organic rare natural animal fibre production.

This project was funded by direct grants from the RIRDC Rare Natural Fibres program. Industry co-investment was provided by farmers, processors and exporters who assisted the project by providing input and feedback based on their experience, business plans and networks.

This report, an addition to RIRDC’s diverse range of over 1900 research publications, forms part of our Rare Natural Fibres R&D program, which aims to identify constraints and solutions hindering increasing mohair, cashmere, and alpaca production.

Most of RIRDC’s publications are available for viewing, downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313.

Peter O’Brien
Managing Director
Rural Industries Research and Development Corporation
About the Author

As a Senior Research Fellow, Dr. Bruce McGregor B.Agr.Sc.(Hons), Ph.D., Advanced Cert. Textile Technology, has focussed on improving the production and quality of mohair, cashmere, alpaca and superfine wool. His long interest in the production, marketing and processing of natural fibres has included Ph.D. studies focussed on the quality of cashmere and its influence on textile materials produced from cashmere and blends with superfine wool. His interests include animal nutrition and farm management, fibre quality, fibre production and textile quality. He has published a number of other RIRDC reports that are available on the RIRDC internet site.

Acknowledgments

The following are thanked for their assistance: Australian Alpaca Association, Jenny Jones; Australian Alpaca Fleece Limited, Mike Talbot, Kaye Sutherland; Australian Cashmere Growers Association, Dr Andrew James; Australasian Mohair Trading, David Williams; Bio-Dynamic Research Institute, Frances Porter; Cashmere Connections, Trisha Esson, Avtar Singh; Deakin University, Dr. Xungai Wang; Didimu.eco, Anna Crozier; Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries, Westerau, Germany, Institute of Organic Farming, Professor Dr. Gerold Rahmann, Director; Mohair Australia, Bill Smith; National Association for Sustainable Agriculture, Australia, Lee Mastus; National Mohair Pools, Dr. Doug Stapleton; Sarah Barrington, Apsley, Tasmanian; The Tasmanian Wool Centre, Ross; M. Van der Siuijs, CSIRO, Belmont; and to those producers who provided feedback.
Contents

Foreword ... iii

About the Author.. iv

Acknowledgments... iv

Executive Summary... vi

1. Introduction ... 1

 1.1. Background .. 1
 1.2. Attributes of organic, green and eco products ... 1
 1.3. Important issues regarding eco-labelling .. 3

2. Becoming an Accredited Organic Fibre Producer ... 4

 2.1. Official process ... 4
 2.2. The steps in the certification process .. 5
 2.3. Some practical issues .. 6
 2.4. What happens during a farm audit? .. 6
 2.5. Implications for rare natural fibres.. 7
 2.6. Approved organisations for certifying organic production... 8

3. Organic Wool and Textile Production... 10

 3.1. Introduction to case studies... 10
 3.2. Wool ... 10
 3.3. Organic cotton .. 16
 3.4. Marketing organic wool ... 16
 3.5. Certifying organic textile products .. 17

4. Developing Organic Pathways .. 19

 4.1. Importance of scale and location ... 19
 4.2. Animal welfare and animal husbandry practices .. 19
 4.3. Road map for future development of organic pathways.. 20

5. Feedback from Industry .. 22

 5.1. Producer feedback... 22
 5.2. Australian marketing organisations and processors ... 23

6. References and reading material .. 24

 6.1. References.. 24
 6.2. Other reading material ... 25
Executive Summary

What the report is about

This report reviewed available information on pathways for organic rare natural animal fibres.

Who is the report targeted at?

The report is aimed at industry organisations, fibre marketing brokers and farmers.

Background

The world organic textile market is currently valued at over $5 billion and growing at 20% compound annually. Australian farmers, processors and exporters do not have access to existing information or potentially available information on pathways for organic rare animal fibre production. Demand exists for the supply of some organic rare natural animal fibres.

Aims/objectives

This report investigates the issues associated with the development of pathways for new supply chains for organic production of rare natural fibres in Australia. This report has been produced as part of a larger project that aims to assist the local rare animal fibre industries in the key areas of efficient fibre production, improved fibre quality, cost-effective fibre processing and new product development.

Methods used

Information has been sourced directly from supply chains involved with rare natural fibre marketing, from the world-wide web sources and by discussion with certifying agencies and interested farmers. Published articles have been sought in data base searches and libraries.

Results/key findings

There are seven organisations in Australia that can provide organic certification. Australia wool producers have exported organic wool but the premiums are low and only large scale producers are viable. There are a variety of certified organic textile products available world-wide that use a range of differing standards. Many local rare natural fibre producers are not satisfied with current certifying requirements in Australia and seek more producer friendly and environmentally relevant standards. A similar development has occurred for Australian cotton. There is demand for organic alpaca and cashmere but supply is very limited or non-existent.

Implications for relevant stakeholders for:

There are many complexities to manage in order to develop an effective supply chain for organic rare natural animal fibres. Understanding rare natural animal fibre production from economic, ecological and animal welfare perspectives will increase the likelihood of successful development of “organic” or “eco-friendly” supply chains. Dedicated producers of organic fibres can now supply market networks.
Recommendations

The following issues need to be considered by the Australian rare natural fibres industries and supply chain partners if they are to develop organically certified products:

- Development and adoption of a simplified and low-cost “organic” or “eco-friendly” certification system.

- Investigation of critical production issues for organic or eco-friendly rare natural animal fibre production including: animal health especially internal parasitism; animal welfare issues; castration; development a critical mass of fibre; record keeping.

- Alignment of research and development priorities within the RIRDC organic program, with the Australian Wool Innovation and other support agencies.

- Increasing the flow of information to producers regarding organic fibre production.

- Working with larger rare natural animal fibre producers to develop successful case studies.

- Clear identification of market opportunities and supply chains for organic mohair, cashmere and alpaca.

- Development of direct marketing pathways to enable higher income to help overcome the high costs for compliance.
1. Introduction

1.1. Background

The long-term sustainability of the rare natural fibre industries is of considerable importance to both the production industries and for economic and social benefits generated by value-adding processing of rare animal fibres in Australia. This report has been produced as part of a larger project that aims to assist the local rare animal fibre industries in the key areas of efficient fibre production, improved fibre quality, cost-effective fibre processing and new product development.

This report investigates the issues associated with the development of pathways for new supply chains for organic production of rare natural fibres in Australia. There are two specific markets being targeted:

1. The world speciality rare natural fibre market for mohair, alpaca and cashmere valued at over $1 billion.
2. The world organic textile market currently valued at over $5 billion and growing at 20% compound annually.

For other natural animal fibres such as Australian Merino wool, regulators and markets are placing pressure on wool producers to improve the ethical aspects (e.g. traceability, sustainability, safety, animal welfare) of their enterprises, and this will increase with time (Pahl, 2007). Australian wool growers could embrace continual improvement in ethical performance and wool quality as a means of differentiating themselves from their competitors, and improve their competitive position in higher value markets (Pahl, 2007).

This report is not about the on-farm or in-factory details of how to produce organic fibre. Rather it is about how farmers and supply chain partners can participate in the rapidly growing organic fibre market. The report summarises how Australian farmers can gain accreditation for organic fibre production. It summarises known organic marketing routes for Australian wool. The report briefly summarises some of the recent developments in European regulations for organic textile accreditation.

1.2. Attributes of organic, green and eco products

When consumers place a special value on a product the product is said to contain credence values. Essentially, credence attributes work because they embody a value to the consumer that goes beyond satisfying a basic need such as hunger, allowing consumers to vote as shoppers at a time when they are feeling increasingly divorced from the production system (Cuthbertson and Marks, 2007).

Over the past 30 years there has been an increasing emphasis towards eco-friendly products. Research conducted by the Australian wool industry indicates the importance of this emergent sector (Anon, 2008a). Large retailers such as the UK retail giant Marks & Spencer, who recently announced a five-year, £200 million eco-plan that forecasts that organic wool and cotton apparel sales will triple, have also identified the growing importance of organic and eco-friendly products.

The definitions of ‘green’ are variable but generally appear to focus on process attributes – concerned with the process of production and thus require the consumer to give credence to the attribute (Cuthbertson and Marks, 2007).
There are a range of attributes of natural animal fibres that make them suitable for organic and eco-friendly markets including (Anon, 2008a):

- Natural features such as renewable production systems, durable fibre, few or no synthetic chemicals used in their production.
- Biodegradable fibres that will degrade and return to their natural elements.
- Sustainable production as every year a new fleece grows and can be removed without harm to the animal.

Zierhl (2004) provides a detailed review of various production systems in farming, and found it was impossible to define where one type of system ends and another begins. Descriptions of production systems include: biodynamic, organic, biological farming, nature farming, natural farming systems, conventional, integrated, best management practice systems, sustainable farming systems. Best practice can however, range from a system that employs a number of the concepts familiar with organic farming such as soil biological health and conservation of biodiversity, to a system that is primarily focussed on reducing off-site impacts through precision farming with little on-farm ecological changes. Likewise, organic farming can vary from a monoculture system that abides strictly by the organic production standards, to a mixed and diversified ‘biological’ farming system that strives to utilise natural ecosystems. The general approach of conventional systems or variations of conventional systems are generally still that the system is a sum of its parts, whereas the more ‘biological’ farmers view a system as greater than its components (Zierhl, 2004).

While all animal fibres can claim to be natural, biodegradable and sustainable only those whose production system has been accredited as being organic can claim to produce organic fibre. There has been relatively little documentation or review of organic animal fibre production as most of the focus has been on food production (Zierhl, 2004; Lu et al., 2008). The Institut of Organic Farming in Germany has conducted an extensive study of organic farming practices and opportunities in Europe and the world (Anon, 2009e). The Director of the institute, Prof. Dr. Gerold, Rahmann, told the author that very little documentation had taken place on the pathways for organic animal fibre production. Almost all of the work on organic production has been focussed on food and for example goat milk (Rahmann, personal communication, 2008; Rahmann, 2009).

The extent to which producers can make substantiated and true claims about the attributes of their products is a key condition for the growth of the credence market (Cuthbertson and Marks, 2007). This is the critical issue with organic production systems as an external auditor verifies that the claims made for a product are true. To obtain organic certification for their products a farmer must meet strict certification standards and undertake work over a number of years. Maintaining these standards is therefore critical to the creditability of organic accreditation.

In looking at international food markets Cuthbertson and Marks (2007) concluded that:

- Different markets respond differently to credence attributes, but the drivers and conditions remain largely the same across the surveyed markets, suggesting that companies that stay abreast of these factors are more likely to be well placed to respond to demand for credence attributes into the future.
- Environmentally sustainable supply chains are noticeably growing in value and scope, a movement driven by two factors. Firstly the consumers’ own increasing environmental awareness and secondly, the changing stakeholder environment where the operations of the food industry are coming under increased scrutiny.
- Respondents’ perception of consumer concern around ethical food production was that consumers buy fair-trade products when they feel it is benefiting a community. They need to see a problem before they will buy a solution. This is also related to animal welfare issues.

The factors that are impacting on credence trends, not as the drivers of trends, but rather as pre-existing conditions that are required for trends to continue to grow are; product safety; origin of
product (traceability); trust in the supply chain (assurance); accreditation which confirms the claims made about product attributes (Cuthbertson and Marks, 2007).

1.3. Important issues regarding eco-labelling

Which issues are the most important for eco-labelling? How can companies communicate the attributes of their products? A new report “Eco-promising: communicating the environmental credentials of your products and services” provides a guide for those wanting to make environmental claims about products and services (Schuchard et al., 2008). The report includes a summary of recent history of environmental claims for products and numerous references to additional material.

The report concludes:

“Eco-promises, like any promise, shouldn’t be entered into lightly. A promise is built on trust: once broken, it’s hard to restore. That’s why it’s so important that companies get their ecopromises right. If you’re going to put your head above the parapet and make claims about your product or service, then they have to be true. But trust is about more than the truth of facts and figures. It is an understanding between two parties based on an implied hope in each other. Trust describes an emotional relationship – based as much on abstract concepts such as intention, belief and ambition, as it is on quantifiable evidence of good performance.

This means that eco-promises need to be embedded in the strategy of an organisation, across the entire supply chain, all operations and every member of staff. Only then will an organisation achieve the maximum benefit of an eco-promise, and only then will consumers trust one brand more than another.”
2. Becoming an Accredited Organic Fibre Producer

2.1. Official process

The Australian Quarantine and Inspection Service (AQIS) has an Organic and Bio-Dynamic Program which provides policy advice and verification services to the export organic and bio-dynamic sector in Australia. The primary objective of the Organic and Bio-Dynamic Program is to ensure that organic and bio-dynamic produce exported from Australia meets the requirements of importing countries, ensuring that international market access is maintained.

If you intend to export food, cosmetics, fibre or any product that is described (labelled) as 'organic', 'bio-dynamic', 'biological', 'ecological' or by any other word of similar indication, you should be aware of the following:

- **Export Control (Organic Produce Certification) Orders**—these orders make it illegal to export organic produce unless an organic produce certificate has been issued. Organic and bio-dynamic produce for export must be certified by an approved certifying organisation, verifying that the produce has been prepared in accordance with the National Standard for Organic and Bio-Dynamic Produce. Approved certifying organisations must be issued with a quality management certificate from AQIS.

- The National Standard for Organic and Bio-Dynamic Produce—Edition 3.3 July 2008 detail minimum requirements for the production, processing and labelling of organic produce. These standards can be accessed from the AQIS website:

The National Standard for Organic Produce states that for entering the organic produce system wool can be called organic from 18 months after entering the system. Based on the trading rules of the International Wool Textile Organisation (IWTO):

91. The term “Wool” and words derived or composed therefrom, qualified or otherwise, and in any language, should refer exclusively to the fibres of the fleece of the sheep, or of animals whose hair is generally assimilated to wool (alpaca, llama, vicuna, yak, camel, cashmere goat, mohair goat, cashgora goat, angora, rabbit) (Anon, 1997).

Thus it should apply that producers of rare natural fibres would need to comply with rules relating to the production of wool.

Once produce has been certified organic it may be eligible to use the following National Certifying Mark for Australian Organic goods:
2.2. The steps in the certification process

There are five steps to becoming certified as an organic producer:

1. Information gathering and evaluation.
2. Application and acceptance for certification.
3. Implementing organic production and record keeping.
4. In conversion.
5. Achieving certified organic status.

Much of the information cited below was sourced from The Bio-Dynamic Research Institute and National Association for Sustainable Agriculture, Australia (Anon, 2008c, 2009a).

2.2.1. Information gathering and evaluation

Gathering and evaluating information on organic production is the first step. Using this report and accessing internet sites will allow farmers to find the necessary information. Most internet sites listed in this report have links to other organisations with further contacts.

You must obtain and read the organic standard from the organisation you choose for certification.

2.2.2. Application and acceptance for certification

An application must be completed and sent to the organisation you have chosen to work with. It is best to talk to potential certification organisation before you apply. Each organisation has its own arrangements and costs.

Each organisation has their own approach to organic production with some having special interests in particular aspects of production (see side box). If these special interests align with a farmer’s personal approach then working with them should be beneficial.

2.2.3. Implementation of organic production and record keeping

When switching to organic methods there is a period of at least two years when the land management undergoes a transition from conventional farming to organic production. The development of an organic management plan is recommended to guide this change in farm practices. You must ensure that every livestock management practice complies with all aspects of the standard.

Good record keeping is vital. It is essential to keep accurate records of farm practices from the time conversion to organics is considered. All inputs to the farm system must be recorded including: fertilizers, chemicals, drugs, feed. Pest and weed control, handling of produce and storage and transport practices need to be documented. For some farms, the existence of good records that predate acceptance for certification has reduced the period of time required to achieve certified organic status (2008e).

Certification with the Bio-Dynamic Research Institute

The Bio-Dynamic Research Institute will not certify a farm unless the farm can show improvements in soil health. The elapse of 3 years from the start of conversion to bio-dynamic may not be enough for certification.

Farmers joining the associated Bio-dynamic Agricultural Association of Australia are able to work with an experienced mentor on a ‘farmer-to-farmer basis’ and have access to their reading materials.

Certification with the National Association for Sustainable Agriculture, Australia (NASAA)

NASSA provides an Organic Management Plan (OMP) template which guides the development of suitable farm operations.
2.2.4. In conversion
After a minimum 12 month period in pre-certification, growers have another full-scale audit during the second year (audits occur at least annually), at which time producers may achieve their first recognised certified level of “In Conversion” (Anon, 2008c).

When consumers purchase ‘In Conversion product’ for a premium, they are recognising the additional work and costs involved in the conversion and it helps farmers become fully organic (Anon, 2008c).

2.2.5. Achieving certified organic status
Requires a minimum prior period of three years of verified conformance with the Standard. Once achieved a business may trade on the organic market as certified organic (Anon, 2009c).

2.3. Some practical issues
The Organic Standard outlines requirements for farmers wishing to attain certification. This includes records required, inputs allowed, and minimum practices required. In addition to organic criteria, the standard includes certification for biodynamic production systems. The following summarises some of the practical issues that need to be managed (Anon, 2008c).

2.3.1. Part property
You may certify only a part of your property in the first instance, with full property certification achieved over a few years. This allows a farmer to gain knowledge and expertise in organic production and spread the financial risk and costs associated with organic conversion.

2.3.2. Soil fertility
Soil is managed through crop rotations and the use of green manure crops, compost, and natural mineral products to maintain natural soil fertility. Artificial fertilisers are prohibited.

2.3.3. Pest & disease control
Plant health is maintained through careful planning, suitable crop rotations and mechanical and natural methods of pest and weed control. Artificial pesticides and herbicides are prohibited.

2.3.4. Conservation
The development of a healthy environment, enhancing landscaping features, native plant and animal species are encouraged. For example, this may include maintaining treed areas as an important wildlife habitat which must comprise a defined proportion of property area.

2.3.5. Genetically modified organisms
Genetically modified organisms (GMO’s) are strictly prohibited at every stage of production. GMO’s are not allowed on the same production unit, even if you are not seeking certification of that area. Converting to organic may be a big change especially if a farmer has been running their property along conventional lines.

2.4. What happens during a farm audit?
The following activities are carried out during a farm audit by the inspector:

- Talking with the farmer and the staff about how the farm is managed.
- Inspection of the farm, crops, livestock, animal housing and storage facilities.
- Inspection of records and other documents which provide evidence of how the farm has been managed (i.e. the proof regarding farm inputs).
- Conducting an audit trail to ensure there is consistency between the records.
• Collection of soil and tissue samples that are tested to ensure compliance.

The likely costs of an annual farm audit and together with other associated costs are in the order of $1500 to $2500 per year, depending on the production system and audit requirements (Pahl, 2007).

2.5. Implications for rare natural fibres

The following implications follow from the existing framework established for certifying farms for organic production:

• A national system is in place.

• Producers of rare natural fibres can commence conversion to organic production as soon as they make the decision.

• Costs of complying with the audit requirements are relatively high and so only larger rare natural fibre businesses will find certification for organic fibre production potentially attractive.

• Given the high costs for complying, financial returns from sales of organic fibre will need to be sustainably higher for the business case to be attractive.
2.6. Approved organisations for certifying organic production

According to the peak body for the organic industry in Australia, The Organic Federation of Australia (OFA), there are seven organisations that are able to provide organic certification (Anon, 2008b).

Australian Certified Organic (ACO)
National Australian Office
PO Box 530
Level 1, 766 Gympie Rd
Chermside 4032
Queensland, Australia
ACO Head Office: (07) 3350 5706
Fax: (07) 3350 5996
Email: info@aco.net.au
Internet: www.aco.net.au
Contact: Andrew Monk or Akiko Nicholl

AUS-QUAL
P.O. Box 3175 SOUTH BRISBANE QLD 4101
9 Buchanan Street SOUTH BRISBANE 4101
Phone: +61 7 3361 9200 or 1800 630 890
Fax: +61 7 3361 9222
E-mail: ausqual@ausqual.com.au
Internet: www.ausqual.com.au
Contact: Bevan Blacklock, Andrew Brown or Ian King

Safe Food Production Queensland (SFQ)
PO Box 400
Spring Hill Qld 4004
12 Helen St
NEWSTEAD QLD 4006
Phone: +61 7 3253 9800 or 1800 300 815
Fax: +61 7 3253 9810
E-mail: info@safefood.qld.gov.au
Internet: www.safefood.qld.gov.au
Contact: Kerry Bell, Natasha Potztal or Ashley McCullough

The Organic Food Chain (OFC)
PO Box 2390
Toowoomba QLD 4350
Lamascotte 195, Kelvinhough-Boodua Rd
BOODUA via OAKEY QLD 4401
Ph: (07) 4637 2600
Fax: (07) 4696 7689
Email: ofc@organicfoodchain.com.au
Internet: www.organicfoodchain.com.au
Contact: Marg Will or Ivy Inwood
National Association for Sustainable Agriculture (NASAA)
PO Box 768
Stirling SA 5152
Unit 7, 3 Mount Barker Rd
Tel: 08 8370 8455
Fax: 08 8370 8381
Email: lyn.austin@nasaa.com.au
Internet: www.nasaa.com.au
Contact: Lyn Austin or Rod May

Bio-Dynamic Research Institute (BDRI)
Post Office POWELLTOWN VIC 3797
Mallet Gum Lane POWELLTOWN VIC 3797
Ph: (03) 5966 7370
Fax: (03) 5966 7339
Phone: +61 3 5966 7333
Fax: +61 3 5966 7433
Internet: www.demeter.org.au
Contact: Frances Porter or Linda McIntyre

The Tasmanian Organic Producers (TOP)
P.O. Box 13 CAMPBELL TOWN
TAS 7210
197 Wilks Road
LORINNA TAS 7306
Phone: +61 3 6363 5162 or 0427 613 697
Fax: +61 3 6363 5162
E-mail: info@tasorganicdynamic.com.au
Internet: www.tasorganicdynamic.com.au
Contact: Julie Page or Rex Williams
3. Organic Wool and Textile Production

3.1. Introduction to case studies

Following a review of many different production systems Pahl (2007) concluded that growing organic wool can be difficult at times, and unless farmers are fully committed, it will not be possible to produce organic wool year after year. In addition to this, wool producers must be prepared to make large changes to their wool production practices, to avoid the circumstances that may require large scale chemical treatments. Importantly, organic wool growers should regard their wool as a premium product, and endeavour to produce wool of the highest quality.

3.2. Wool

3.2.1. WOOLganic yarns

The following extracts from the WOOLganic internet site summarise the critical points in their supply chain (Anon, 2009b). WOOLganic yarns are made from certified organic Australian merino wool which has been certified by the Biological Farmers Association (BFA) or the National Association for Sustainable Agriculture, Australia (NASAA). No synthetic inputs are used on the livestock- no dips, drenches, back lining or antibiotics. However, if an animal is unwell, it must be removed from the herd and treated appropriately. Each grazing property must be audited and assessed to establish the best management practices for the region, and a stocking rate that will have the least impact on the environment is calculated.

WOOLganic wool is scoured in a plant that is certified by a third party known as the Global Organic Trade Standard (GOTS). WOOLganic yarns are cleaned or scoured using only hot water and detergent. All water used in scouring is recovered and reused in agriculture. The wool is carded and combed on machinery that has been cleaned of conventionally grown fibres before the organic wool is processed. WOOLganic yarns are spun on machinery that is flushed before spinning to be sure there is no fibre contamination from non-organic yarn. There are no synthetic lubricants used on the machinery as the mill organic certification from BIOGRO. WOOLganic yarns are dyed with ecologically low impact acid dyes that are metal free (Photos 1 and 2).

Photo 1.

A display of colourful WOOLganic knitting yarns at the Tasmanian Wool Centre, Ross.
3.2.2. Elders
Auctions of organically produced wool have been held by Elders. During 2007 a feature sale of more than 220 bales of certified and accredited organic and “eco” wool in Melbourne resulted in the sale of all bales to international wool buyers community. Elders wool Portfolio Manager Geoff Redden said the feature sale generated premiums of up to 5 per cent above prices for corresponding non-organic wools offered on the day. Mr Redden said the major buyers were Lempriere Australia and BWK Elders. Wool purchased by BWK Elders was sent to its Global Organic Textile Standard (GOTS) fully-accredited organic wool processing facility in Bremen, Germany. The bulk of the wool was sourced from the western division of New South Wales and South Australia’s Upper North. Mr Redden said large retail organisations were currently seeking out commercial quantities of Australian wool as they developed their lines of organic clothing and homewares. Elders wool Marketing Manager, Michael Blake said Elders has aligned itself with an organic certification facilitator to assist growers who want to know more about the steps involved in becoming accredited organic wool producers (Anon, 2007a).

Mt Westwood Organics is an organic Merino wool and prime lamb producer based 140 km north of Broken Hill in NSW. Over the past two years 120 bales of organic wool were sold through the domestic market. Brendan Cullen of Mt Westwood says he was impressed with the current organic market. Their wool is sold through two different brokers, via auction with Elders and through the Australian wool Networks tender process. “We have gained premiums of 10-15% above market value on the day the organic wool was sold. It is a nice change to be able to compete with the elite wools in the industry with our bread and butter pastoral wools. Our wools tested at 21-22 µm, 55-65% yield and depending on conditions 40 N/ktext” Mr Cullen observed (Anon, 2007a).

3.2.3. Landmark
For accredited organic wool growers, Landmark has arranged on-the-spot prices and forward contracts for both AWEX Code of Practice and Direct to Mill (unskirted) prepared clips. To market organic wool Landmark requires proof of organic certification to meet market specifications and maximise grower returns (Anon, 2008d).

Peter and Tracy Botten have sold the first lines of organic wool from their 7000 head flock on 'Corona' station, achieving from 50 cents per kilogram to more than $1/kg above the market for similar traditional wools providing a premium of about 10% (Anon, 2008e). 'Corona' achieved certification in just two years rather than the normal three, because the Bottens had not used chemicals for the previous three years prior to starting certification. Peter said apart from a few technical elements such
as soil testing to identify any contamination and auditing every 12 months, the move to organic wool production was relatively simple and there was very little paper work.

Wool operations manager for Quality Wool, Brian Vagg, said Landmark had been receiving increasing enquiry for organic and chemical-free wool from buyers and processors, and so it was keen to assist and support growers with their production. "We specially identify the wool in our catalogues and work closely with buyers to ensure they are fully aware of the wool and its specifications prior to sale. We market it to the trade well before the sale," Brian said. He said consumers were becoming more conscious of environmental issues and "clean and green" product, and Quality Wool recognised the potential of chemical-free and organic wool as a developing market for growers (Anon, 2008e).

3.2.4. Fletcher International Exports

Phil Cranney, wool buyer for Dubbo early stage processor Fletcher International Exports, which purchased the Bottens' wool in the Quality Wool catalogue, said the mill was receiving increasing demand for organic wool from the US, UK and Germany. The Dubbo mill became an accredited organic wool processor through the National Association for Sustainable Agriculture Australia (NASAA) in November 2007 and recently completed its third batch of organic wool to overseas markets (Anon, 2008e).

3.2.5. The Merino Company

The Merino Company (TMC), which runs transparent branded wool platforms such as Naturally Organic Wool and ZeroCO₂, has signed a deal with UK-based Berwin & Berwin, one of Europe’s largest suit manufacturers (Anon, 2008g). The deal gives Berwin & Berwin exclusive rights to the distribution of TMC branded, tailored wool suits to UK department stores, retail boutiques, as well as featuring in over fifty House of Fraser stores.

TMC specialises in setting up supply chains for wool apparel and has worked with companies such as Instyle Contract Textiles Pty Ltd to develop its ‘Life Textiles’ programme, a range of interior textiles which have a minimal impact on the environment. These textiles were developed in conjunction with The Woolmark Company and are now found in a range of end uses from home textiles to industrial uses.

As part of its fully certified ‘Naturally Organic Wool’ platform, TMC provides customers with a reliable and traceable organic product from sheep to shop shelf. “Our Naturally Organic Wool is completely organically certified. We can provide certification at each level of accredited process, from woolgrower, through each manufacturing stage. In addition to supplying certified organic wool, TMC has Global Organic Textile Standard (GOTS) certification at one of its wool top making facilities, Nahai Pindar Topmaking Company in China (Anon, 2008g).

TMC says its ‘ZeroCO₂’ brand platform was developed in response to the growing demand from retailers and brands for ‘footprint’ free garments (Photo 3). “ZeroCO₂ is the first and only Lifecycle Carbon Neutral wool platform in the world”, claim TMC. Total emissions of a garment are offset on the farm, via tree planting, meaning that all wool garments are ‘100% carbon neutral’ throughout the garment’s whole life cycle (Anon, 2008g). Where the wool is grown, the farmers balance the carbon equivalent emissions, without compromising product integrity or performance.

Photo 3.

The Merino Company has launched a brand to identify Merino wool products grown on farms that offset the carbon dioxide emissions from the production processes.
3.2.6. Roberts, Launceston

Eco-Wool is wool compliant with the chemical residue standard of the European Union eco-label for textiles and is not certified organic. Pahl (2007) concluded that while many smaller supply chain wool companies expressed little interest in Eco-Wool, Roberts from Tasmania said that they were paying a premium of 3% for Eco-wool. Roberts is working with the Merino Company to identify customers that want to add value to their products by making claims about ethical production, and to verify this through certifications and traceability (Anon, 2009c, Photo 4).

Photo 4.

A display of high tech teko socks at the Tasmanian Wool Centre, Ross, which attracts many tourist buses. The centre also houses a wool museum. Ross is the location for many businesses dependent on the tourist market.

According to Gilfedder (2006) an example of the opportunities that exist for gaining market advantage is demonstrated by the sale of Tasmanian wool to Teko Socks, a Colorado-based sock manufacturer. Teko was recently named one of the top 50 Cutting Edge companies by Inc Magazine. The company use only quality fibres, sound manufacturing processes, and recycled materials for packaging. Teko are currently sourcing wool for their socks from one Tasmanian grower who was required to demonstrate environmental sustainability and the protection of biodiversity values. There is a continuing high level of interest in Tasmanian ‘ecowool’ from the largest Northern American manufacturers, including Mountain Equipment Co-operative and Royal Robbins. This model of marketing is based on the scarcity value of rare natural fibres (McGregor, 2002) and an essential part of the model used in the marketing of New Zealand wool brands such as Icebreaker (Anon 2009d). Associating the eco-wool product with other marketing attributes is clearly a strategy being used (Photos 5 and 7).

Photo 5. Details of the marketing strategy used to sell eco wool Teko sock as shown on the packing which indicates the purchase of renewable energy, ethical positioning, the support for community environmental organisations and the use of recycled materials.
3.2.7. Icebreaker, New Zealand
Traceability is a critical part of the Icebreaker pledge for responsibility for the entire life-cycle for its garments (Anon 2009d). For Icebreaker it is not just about where it’s made, it’s about how it’s made. For Icebreaker transparency and being able to show the whole design for the business, starts with the farmers and continues through every step of the supply chain. Thus Icebreaker has introduced a traceable “Baacode” into every garment which via the website allows purchasers to see the conditions of the sheep, meet the farmers and follow the garment production process (Anon, 2008f).

3.2.8. Cultural artisans, Mexico
In the Oaxaca region of Mexico, traditional production methods of textile goods has been encouraged during recent decades by an expanding tourist market and rekindled interest in traditional crafts and employment opportunities. In towns such as Teotitlan del Valle, merchants have established supply chains for raw wool supply, organic dye supply and the production and export of good. Merchants employ designers, spinners and weavers to produce textiles incorporating traditional designs. These textiles are widely displayed in the main towns and villages of the region. Tourists can participate in escorted tours of workshops and purchase textiles for export locally or internationally. Some merchants have importing agents in countries such as the United States of America and in the European Union. No accreditation has been obtained for organic labelling with the merchants relying upon their reputation and connections with traditional Mexican Indian cultures.

Photo 6 (right). Senor Isaac Vásquez Garcia, weaving traditional designs in naturally dyed wool in his workshop in Teotitlan del Valle, Oaxaca, Mexico.

Photo 7 (below). Senor Jose Buenaventura Gonzalez showing cochineal being grown on cactus leaves in his workshop in Teotitlan del Valle, Oaxaca, Mexico. Cochineal provides vivid red colours.

Photos 8a and b (below). Organic dyeing of wool in workshops in Oaxaca obtain blue dyes from locally grown indigo, and green, yellow, black and fawn dyes from locally harvested mosses, flowers and seeds.
Photo 9. A range of traditionally designed rugs using wool organically dyed with plant extracts and cochineal, Oaxaca region, Mexico.
3.3. Organic cotton

During 2007/08, world production of ‘certified’ organic cotton was only 140 tonne. The value of this cotton was about $US 120 million with most production from the Middle East and South East Asia. In 2008 global sales of organic cotton and textile products was approximately $US 2.6 billion (van der Siuijs, 2009).

Production of naturally coloured cotton in 2007 was 16 tonne. Most of the natural coloured cotton was red, but blue and yellow was also produced.

Costs of production for organic cotton in US experiments were on average 37% higher than for conventional cotton production. This cost differential was primarily due to greater hand-weeding costs and significantly lower yields in organic cotton, compared with either integrated pest managed or conventional cotton (Anon, 2009f).

According to van der Siuijs (2009), cotton produced under Australian Best Management Practices (BMP) is produced in harmony with the natural environment. In other words, BMP claims to provide a guarantee of environmental and ethical stewardship. BMP cotton has a traceable supply chain with audits conducted from farm to the textile mill. BMP is claimed to be a cost effective environmentally and ethically responsible alternative product class.

3.4. Marketing organic wool

Wool industry organisations advised that wool producers who were considering converting to organic will need to have a customer in mind, and be able to consistently produce the types and quantities of wool required by them (Pahl, 2007). Traditional open-cry auctions are probably not the right tool for supply chains that trade in organic wool. Customers often complain about the lack of certainty on price, quality and volume. Therefore, organic wool producers need to consider alternative marketing approaches. If they do not have the resources to do this, then they need to enlist the help of a company that can do this for them. However, the more businesses between the wool producers and the end-customer in the direct-marketing supply chain, the lower the value that the wool producer can expect to be added to their wool clip. An organic wool producer with many years of experience also advised that organic wool growers should avoid open-cry auction systems. He said that they should negotiate directly with their customers, and provide them with the close connection that their consumers want with farms (Pahl, 2007).

For organic wool production Pahl (2007) summarised the main marketing issues arising from traditional wool brokers as:

- Demand for organic wool was outstripping supply.
- Premiums at the first organic auction were 10 to 15% higher but at the last auctions in 2007 the premiums were between 5 and 10%.
- This premium is still not enough to cover costs.
- Elders were holding organic and Eco-Wool (low residue) auctions around three times a year.
- Wouldn’t pursue growing organic wool at this stage. It is still very much a niche market and the costs are high.
- Most organic wool was being sold into knitwear markets in the US.
- For direct selling agents premium for organic mostly between 5 and 10%, and this is generally only for the finer wools (18-20 µm).
- Coarser wools, 21-23 µm, often do not attract a premium.
3.5. Certifying organic textile products

This section provides an introduction to the emerging focus on the impact of textile production on the environment. These forces will create increasing demands on fibre producers to understand their impact on the environment but in doing so will provide opportunities for organic producers. The environmental affects of textile processing are attracting more attention of authorities concerned about water pollution, energy use, human health and sustainability (Slater, 2003).

The cotton industry has made enormous progress in the marketing of organic cotton textiles. Details can be easily found on the internet and annual international organic cotton conferences discuss all aspects of the organic cotton supply chain. For example, Mammut, the Swiss mountain sports specialist, along with its partner Remei AG, are producing totally organic high-quality cotton textiles for men and women. The product bioRe is organically grown and ecologically processed; non-chlorine bleaching has been replaced by eco friendly oxygen bleach; fabrics are finished without formaldehyde; dyestuff compositions meet strict ecological standards and dye mills are connected to waste water treatment plants. The system is independently audited (Anon, 2008f).

Pahl (2007) refers to international market research into retailer and brand company interest in ethically-produced wool commissioned by the Queensland DPI&F and Australian Wool Innovation in 2006 that identified 12 companies in the US, Japan and western Europe that were interested in sourcing ethically-produced wool from Australia. The certifications of most interest to these companies were Certified Organic, Oeko-Tex 100, Fairtrade, the Japanese Eco-Mark, and the EU eco-label. In particular the development and introduction of the Confidence in Textiles brand is having a major impact in Europe.

3.5.1. Confidence in Textiles, the Oeko-Tex Standard 100

The Oeko-Tex Standard 100 was presented to the textile and clothing industry for the first time in 1992 at the Interstoff trade fair. The first companies with Oeko-Tex certification included manufacturers of underwear, baby wear and home textiles in Germany, Austria and Switzerland. Just one year after the launch of the product label, there were 214 companies involved in Oeko-Tex certification at all stages of the manufacturing process in these countries. There are currently over 8,000 textile and clothing manufacturers throughout the textile processing chain in more than 80 countries certified according to the Oeko-Tex Standard 100. With over 65,000 certificates issued and millions of labelled articles in almost all product sectors, the "Confidence in textiles" label is the best known and most widespread test label for textiles tested for harmful substances in the world (Anon, 2008g, Photos 10 and 11).

Photo 10.

The Confidence in Textiles logo used to indicate conformance to Oeko-Tex standards.

The Oeko-Tex Standard 100 is a globally uniform testing and certification system for textile raw materials, intermediate and end products at all stages of production. The Oeko-Tex Standard 100 was introduced at the beginning of the 1990s as a response to the needs of consumers and the general public for textiles which posed no risk to health. "Poison in textiles" and other negative headlines were widespread at this time and indiscriminately branded all chemicals across the board used in textile manufacturing as negative and dangerous to health (Anon, 2008g).

The demands made of modern textile products cannot be realised without the use of specific chemical substances. Fashionable colours, easy-care properties, a long life span and many other functional
properties are now demanded of textiles, and are essential in some cases, depending on the intended use such as for work-wear (Anon, 2008g). Until the introduction of the Oeko-Tex Standard 100 there was neither a reliable product label for consumers to assess the human ecological quality of textiles nor a uniform safety standard for companies within the textile and clothing industry which enabled a practical assessment of potential harmful substances in textile products. The Austrian Textile Research Institute (ÖTI) and the German Hohenstein Research Institute jointly developed the Oeko-Tex Standard 100 (Anon, 2008g). In developing the Oeko-Tex Standard the Institutes responsible considered the cradle to grave aspects of textiles. This led to the concept of textile ecology (Anon, 2008g). Textile ecology covers:

1. Production ecology: effects of textile production processes on man and the environment, operational safety, material, water and energy consumption, wastewater and waste treatment, dust and noise generation.
2. Human ecology: effects of textiles and the chemical contained in them on the health and well being of the consumer.
4. Disposal ecology: recovery, recycling and disposal (thermal elimination and dumping) of textiles.

The tests for harmful substances according to Oeko-Tex Standard 100 are always based on the intended use of the textile. The following principle therefore applies (Anon, 2008g):

The more intensively a textile comes into contact with the skin (and the more sensitive the skin), the higher the human ecological requirements which must be met.

Accordingly, successfully tested textile products are allocated to four different product classes:

I Textiles and textile toys for babies and small children up to the age of three, e.g. underwear, romper suits, bed linen, bedding, soft toys etc, representing 36% of products tested.
II Textiles which, when used as intended, have a large part of their surface in direct contact with the skin, e.g. underwear, bed linen, terry goods, shirts, blouses etc, representing 57% of products tested.
III Textiles which, when used as intended, do not come into contact with the skin, or only have a small part of their surface in contact with the skin, e.g. jackets, coats, interlining materials etc, representing about 2% of products tested.
IV Furnishing materials for decorative purposes such as table linen and curtains, but also textile wall and floor coverings etc, representing about 5% of products tested.

The tests for harmful substances comprise substances which are prohibited or regulated by law, chemicals which are known to be harmful to health and parameters which are included as a precautionary measure to safeguard health.

According to Pahl (2007) a report from New Zealand found that only six pesticides on the Öeko-Tex 100 list of controlled pesticides were currently used by wool growers for protection from external parasites in that country. These chemicals were: chlorfenvinphos; cypermethrin; coumaphos; diazinon; cyhalothrin; and propethamphos. Many of these chemicals may not be registered for rare natural fibre production in Australia. However the chemical on the list of controlled pesticides may change from time to time.

![Photo 11. The confidence in textiles logo as shown on the eco wool Teko socks label.](image-url)
4. Developing Organic Pathways

There are many unknowns and a complexity of issues for an effective supply chain for organic rare natural animal fibres to be developed.

4.1. Importance of scale and location

Using the Australian wool industry as an example, most of the organic wool is being produced in the pastoral zone where two important factors exist: large extensive farms where inputs of chemicals and fertilizers are low or non-existent; and the farming operations are large so compliance costs are spread over a relatively greater output. All of the rare natural fibre industries are outside the pastoral zone and small in relative scale.

Therefore the main challenges to overcome in developing organic pathways for rare natural fibres are developing organic systems suitable for more intensive grazing that do not harm animal health and welfare and developing sufficient scale of production to spread compliance costs. Certainly a review of the future of organic goat production presented to an international conference in 2008 (Lu et al., 2008) concluded that “Future of organic goat production is to continue (to) search for alternatives that are environmentally friendly, human health conscientious and animal considerate. Understanding organic goat farming from economic, ecological and animal welfare perspectives will increase the likelihood of success”.

4.2. Animal welfare and animal husbandry practices

Producers (see Section 5) have suggested the development of an intermediate situation for “eco-friendly” animal fibre production that respects the general intention of organic production ideals but incorporates the practical issues that need to be managed for sensitive and practical animal husbandry which maintains healthy animals.

Currently some of the organisations that certify organic animal produce place an absolute priority on animal husbandry practices that may be described as ‘non-interventionist’, meaning they have the appearance of trying to simulate a natural system. For example, the use of vaccines, drugs and other animal health and management practices may not be permitted despite these practices being defined as essential under codes of practice for the welfare of farm animals. Prohibition of castration and prevention of the removal fighting teeth in alpacas for example are not in accordance with accepted farming practice or for the safe handling of these animals.

Industry needs to establish dialogue with the relevant animal welfare authorities in the various State Government Departments of Primary Industries (Bureau of Animal Welfare) and the Animal Welfare Science Centre, University of Melbourne to stimulate the development of acceptable codes of practice and eco-friendly production systems.

Rare natural animal fibre producers will need to carefully consider the changed practices, costs and benefits associated with becoming certified for organic or eco-friendly production and the difficulties in complying with the requirements year-in year-out if the experience of Australian wool producers (Pahl, 2007) is a reliable guide.
4.3. Road map for future development of organic pathways

The following issues need to be considered by the Australian rare natural fibres industries and supply chain partners if they are to develop organically certified products:

- Development and adoption of a simplified and low-cost “organic” or “eco-friendly” certification system for rare natural animal fibre producers and supply chain participants.

- Investigation of critical production issues for organic or eco-friendly rare natural animal fibre production including: animal health especially internal parasitism; animal welfare issues; castration; development a critical mass of fibre; record keeping.

- Alignment of research and development priorities within the RIRDC organic program, with the Australian Wool Innovation and other support agencies.

- Increasing the flow of information to producers regarding organic fibre production including involvement of appropriate organic certification organisations at industry events.

- Working with larger rare natural animal fibre producers to develop successful case studies and training opportunities including field days.

- Clear identification of market opportunities and supply chains for organic mohair, cashmere and alpaca.

- Development of direct marketing pathways for organic animal fibre to enable higher selling costs to help overcome the high costs for compliance.

Ramifications and critical issues for an organic animal fibre supply chain are summarised in Fig. 4.1.
Fig. 4.1. The ramifications and critical issues relevant to the development of an organic animal fibre supply chain.

<table>
<thead>
<tr>
<th>Supply Chain</th>
<th>Organic Ramifications</th>
<th>Critical issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producer</td>
<td>Can a simplified certification system be agreed upon by industry?</td>
<td>Animal welfare, “normal” farm practices.</td>
</tr>
<tr>
<td></td>
<td>Will the cost of certification be sufficiently rewarded by the selling price?</td>
<td>Enterprise size, cost of auditing, consumer attitudes.</td>
</tr>
<tr>
<td></td>
<td>Who will audit the certification?</td>
<td></td>
</tr>
<tr>
<td>Fibre Buyer</td>
<td>Will there be sufficient quantity to attract raw fibre buyers?</td>
<td>Size of orders and specifications.</td>
</tr>
<tr>
<td></td>
<td>Will the buyer pay a premium?</td>
<td>Cost of production and cost of certification.</td>
</tr>
<tr>
<td>Processor</td>
<td>Will there be sufficient fibre in one lot to process a 100% organic product?</td>
<td>Availability of smaller scale processors.</td>
</tr>
<tr>
<td></td>
<td>Who will audit the certification?</td>
<td>Costs of processing.</td>
</tr>
<tr>
<td>Garment Manufacturer</td>
<td>Traceability of certified fibre.</td>
<td>Fibre quality and textiles that meet specifications.</td>
</tr>
<tr>
<td></td>
<td>Who will audit the certification?</td>
<td></td>
</tr>
<tr>
<td>Retailer</td>
<td>Will retailers accept a simplified certification system?</td>
<td>Will they pay a premium?</td>
</tr>
<tr>
<td></td>
<td>Will they prominently display textiles?</td>
<td>Profit margin.</td>
</tr>
<tr>
<td>Consumer</td>
<td>Will consumers accept a simplified certification system?</td>
<td>Will consumers pay a premium?</td>
</tr>
</tbody>
</table>
5. Feedback from Industry

5.1. Producer feedback

Cashmere Producer, NSW, January 2009.

“The idea of organically grown Cashmere is interesting. We are virtually organic and quite a few others likewise. The cost of drenches, the requirements of Chemcert, the lack of product certified for goats have all contributed, let alone ideological reasons. This industry needs all the help it can get! However we still have a core of growers committed to producing quality cashmere.”

“We need a system that is intermediate between conventional farming and full organic certification. Such a system should be based on best practice with validated processes. I believe that many of the ‘organic’ practices are dodgy animal husbandry practices, for example with internal parasite control. Further, how can you have ‘organic practices’ approved by the certifying authority which are not approved by the Australian Pesticides and Veterinary Medicines Authority (APVMA)? Where does that leave producers in regard to efficacy of product use or producing food that is safe for human consumption? What do you do as an organic producer if you want to eradicate lice from your cashmere goats?”

Mohair Producer, NSW, March 2009.

“We are virtually organic already. We see it as a way ahead but the industry has not been encouraging. We only use sulphur and copper drench. How far does the organic fibre production system have to go?”

“The cost structure to become an organic producer is too restrictive for small farms. We need a step process to allow conversion to organic production providing an introduction process before moving into a full organic system. This would allow more grass roots producers to reduce chemical inputs over time and get used to the documentation.”

Alpaca Producer, Victoria, April 2009.

“I was very keen to be organic as we never used chemical fertilizers but I was browned off by NASAA procedures. They did not have practical approaches to animal welfare issues such as castration and trimming of fighting teeth. Their approach was unrealistic and put large obstacles in the way of thoughtful farmers. What about developing an ‘eco-friendly’ approach to fibre production? In processing for example, the Peruvians are going back to Inca dyes which are brilliant and ‘permanent’. We need a realistic animal welfare procedures appropriate to the animal production system and research and development to support this approach. A realistic approach between organic production with consideration to how the customer responds.”

Alpaca Producer, Queensland, November 2008.

“We have a lot of demand for our organic fibre for textiles and for information from producers on how to become organically accredited. Demand in luxury hotels has doubled over the past year for organic fibre for interior design.”
5.2. Australian marketing organisations and processors

“There is a lot of inquiry for organic alpaca product but we have no supply”, Mike Talbot, Australian Alpaca Fleece Ltd, October 2008.

“We have a European client who really likes the Australian cashmere but would like to obtain organic product. As in the past we have told the client that the best we can do at this stage is pesticide free cashmere.” Trish Esson, Cashmere Connections, December 2008.

“There has been no inquiry for organic mohair but we have not tried to develop a market. Mohair is already a niche market and organic marketing would split it even further”, David Williams, Australasian Mohair Trading, March 2009.

“There has been no inquiry for organic mohair”, Dr. Doug Stapleton, National Mohair Pools, October 2008.
6. References and reading material

6.1. References

Anon, 2009a. Into Organics. National Association for Sustainable Agriculture, Stirling, Australia

6.2. Other reading material

Anon, 2006. Insights. Case studies on how woolgrowers are successfully managing pastoral country for profit and sustainability. Land and Water Australia, Canberra.

Anon, 2008. Organic Farming Livestock, 3rd Edition. NSW Department of Primary Industries

Queensland Department of Primary Industries have various guides available on their internet site:

 http://www2.dpi.qld.gov.au/organics/

 Guides include: A guide for organic producers; A guide for existing and intending organic farmers; A guide to organic production and processing. Of interest to prospective organic farmers the detailed 2004 report and CD “Organic farming: Is it for you?”

Contact organisations:

The Organic Federation of Australia (OFA). http://www.ofa.org.au
Pathways for the Development of Organic Rare Natural Animal Fibre Production

RIRDC Publication No. 09/163

By Dr Bruce McGregor

This report investigates the issues associated with the development of pathways for new supply chains for organic production of rare natural fibres in Australia. It has been produced as part of a larger project that aims to assist the local rare animal fibre industries in the key areas of efficient fibre production, improved fibre quality, cost-effective fibre processing and new product development.

The world organic textile market is currently valued at over $5 billion and growing at 20% compound annually. Australian farmers, processors and exporters do not have access to existing information or potentially available information on pathways for organic rare animal fibre production. Demand exists for the supply of some organic rare natural animal fibres.

RIRDC is a partnership between government and industry to invest in R&D for more productive and sustainable rural industries. We invest in new and emerging rural industries, a suite of established rural industries and national rural issues.

Most of the information we produce can be downloaded for free or purchased from our website <www.rirdc.gov.au>.

RIRDC books can also be purchased by phoning 1300 634 313 for a local call fee.

Contact RIRDC:
Level 2
15 National Circuit
Barton ACT 2600

PO Box 4776
Kingston ACT 2604

Ph: 02 6271 4100
Fax: 02 6271 4199
Email: rirdc@rirdc.gov.au
web: www.rirdc.gov.au

Most RIRDC books can be freely downloaded or purchased from www.rirdc.gov.au or by phoning 1300 634 313 (local call charge applies).

www.rirdc.gov.au