Field Guide to Olive Pests, Diseases and Disorders in Australia

Robert Spooner-Hart, Len Tesoriero, Barbara Hall
Disclaimer

The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.

The information in this book was the best available at the time of publication. However, as circumstances may change, readers should seek professional advice on developments since publication, particularly with respect to monitoring and pest management. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances.

The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged.

Requests and inquiries concerning reproduction and rights should be addressed to the RIRDC Publications Manager on phone 02 6271 4165

Authors: Robert Spooner-Hart (UWS), Len Tesoriero (NSW DPI) and Barbara Hall (SARDI). Photographs: authors (UWS, NSW DPI, SARDI), Queensland DPI (as marked), the Australian Quarantine and Inspection Service, Manuel Civantos López-Villalta (Olive Pest and Disease Management) International Olive Council, WA Department of Agriculture and Food, & University of California IPM Program.

Editing & design: Matthew Stevens, ScienceScape® Editing, Sydney.
Contents

Foreword 5
Acknowledgements 7
Integrated pest & disease management 9
Monitoring 10
 Monitoring methods 11
 Recording data 14
 Action thresholds 14
Using this guide 15
Beneficial species 16
Invertebrate pests 19
 Ants 19
 Armoured scales 20
 Black scale, *Saissetia oleae* 22
 Cicadas 24
 Fruit flies 25
 Grasshoppers 26
 Green vegetable bug, *Nezara viridula* 27
 Lightbrown apple moth, *Epiphyas postvittana* 28
 Olive bud mite, *Oxycenus maxwelli* 29
 Olive lace bug, *Froggattia olivinia* 30
 Olive fruit caterpillar, *Cryptoblubes* sp. 32
 Rutherglen bug, *Nysius vinitor* 33
 Snails 34
 Thrips 35
 Weevils 36
Diseases 38
 Anthracnose 38
 Charcoal rot 39
 Crown gall 40
 Leaf mould 41
Foreword

Although the Australian olive industry is 150 years old, recent rapid industry expansion in all mainland states has led to increased problems with pests and diseases not previously encountered. Arthropod pests and diseases are often key constraints to economic production through their effects on both yield and quality. Apart from diseases caused by living organisms (pathogens), olive trees are also subject to disorders resulting from adverse environmental conditions and cultural practices. While Australia appears to be free of a number of cosmopolitan olive pests and diseases, the industry is vulnerable to their introduction.

This book originated from a national RIRDC-funded project on sustainable pest and disease management in the Australian olive industry, and was one of its major recommendations. Apart from invertebrate pests and disease-causing organisms, many other symptoms of damage to plants and fruit were encountered which are likely the result of physiological and other disorders due to irrigation or nutrients. In addition, a national survey conducted as part of the project indicated that while a number of growers thought they could identify pests and diseases, few could recognise beneficial species in their grove. This field guide takes all of these issues into account.

This field guide summarises information on most of the possible pests, diseases and disorders. It has been designed as a quick reference to take into the grove and
use to identify pests and diseases and the damage they cause. It is not definitive, as it is essentially a guide for recognition of damage and disorders in the field. Thus, it has only brief biological and other descriptors for each pest or disease. In addition, we have not included recommended pesticide control measures. A list of currently registered and permitted chemicals for use on olives is provided in a pocket at the back of this publication. The website of the Agricultural Pesticides and Veterinary Medicines Agency (www.apvma.gov.au) should be checked regularly to maintain up-to-date information on pesticide registrations and permits for the Australian olive industry.

Peter O’Brien
Managing Director
Rural Industries Research and Development Corporation
Acknowledgements

This field guide is part of a communications initiative by the Rural Industries Research and Development Corporation (RIRDC), the University of Western Sydney, the NSW Department of Primary Industries, the South Australian Research and Development Institute (SARDI) and others to ensure that research can be passed on in a useful form to growers.

Funds to produce this field guide were provided by RIRDC, the Spray Adjuvants Company of Australia Pty Ltd (SACOA), Nufarm Australia and the Rylstone Olive Press (Bentivoglio Olives). Without this funding, the field guide could not have been published.

The authors would like to thank everyone who has contributed to this book. First, the other members of the project team on Sustainable Pest and Disease Management, Stewart Learmonth (WA Department of Agriculture) and Frank Page (formerly of Queensland Department of Primary Industries). We thank all the photographers who contributed to this book. While the authors and their institutions provided many of the images, we particularly wish to thank the State of Queensland, Department of Primary Industries and Fisheries, in particular Chris Freebairn, for a number of images of pests and beneficial species (as indicated on images); the Department of Agriculture and Food WA, for providing images of weevils and wingless grasshopper; the University of California IPM Program, for providing images of olive fly; the International Olive
Council, which provided the image of olive moth from the *Olive Pest and Disease Management* book; and Ric Cother (NSW DPI) and Mark Whattam (AQIS Victoria) for images of olive knot. Last but not least, we would like to thank all the olive growers and consultants who have assisted in surveys, monitoring and supporting the research on sustainable pest and disease management in the olive industry.

This field guide is dedicated to the memory of Damian Conlan, who was a member of the initial project team, a good friend and a tireless worker for the Australian olive industry.
Integrated pest & disease management

Integrated pest and disease management (IPDM), developed in the 1960s and 1970s, is based on ecological principles. It encourages reduced reliance on pesticides through the use of a number of control strategies in a harmonious way to keep pests and diseases below the level causing economic injury. It came out of the realisation that too heavy a reliance on pesticides (particularly those with broad-spectrum activity) can cause major problems, notably:

- effects on human health and safety
- environmental contamination
- pesticide resistance in target and non-target organisms
- resurgence of secondary pests
- plant damage or yield loss (phytotoxicity)
- residues on fruit and products, with national and international consequences.

There is also general community concern about the use of pesticides, particularly on foods.

IPDM commonly utilises or encourages biological control through natural enemies such as predators, parasites, insect diseases and non-pathogenic antagonistic or competitive microorganisms. It also frequently involves cultural control strategies to minimise pest and disease entry and their spread in space and time. Cultural controls include protocols of entry to farms; manipulation of the field environment to discourage pests and diseases, such as opening crop canopies to increase
air movement and reduce humidity; the elimination of alternative hosts for pests; or growing nectar- and pollen-producing plants to encourage natural enemies. IPDM may also involve the physical destruction of infested materials and the use of tolerant or resistant plant species, where available. Chemical pesticides are used judiciously, and thus play a supportive role.

The major components of IPM systems are:

- identification of pests, diseases and natural enemies
- monitoring of pests, diseases, damage and natural enemies
- selection of one or more management options on the basis of monitoring results and action thresholds, from a wide range of pesticide and non-pesticide options
- use of selective pesticides targeted at the pest or disease—for instance, pesticides that will interfere least with natural enemies, targeted only at infested trees or parts of trees.

Monitoring

The most important part of any pest and disease management system is monitoring. This is because the mere presence of a particular pest does not provide enough information for decision-making. The pest or disease may not be sufficiently widespread, or the population levels may not cause enough damage, to warrant undertaking management strategies.
Regular monitoring, with effective recording of the results, provides important information that helps in making decisions on whether and when action should be taken, and how effective actions have been. The first step in the development of a pest and disease management program is to concentrate on the most serious pests and diseases, and build up records about the times and locations where problems are most likely to occur. Because natural enemies play an integral role in the system, they also need to be recorded.

In commercial situations, monitoring programs need to be quick and efficient while still providing accurate and repeatable results. Monitoring can be undertaken by growers, trained employees or commercial pest scouts. Monitoring commonly involves visual observations, usually based on sampling, and may involve actual counts, or the presence or absence of pests, diseases and their associated damage. Other supplementary monitoring methods are coloured sticky traps (yellow is the most common, and attracts small, flying, sap-sucking insects such as thrips, aphids and male scale insects, as well as beneficial species such as parasitic wasps), and chemical attractant traps that are often species-specific.

Monitoring methods

Monitor every grove (or block in large groves) at least monthly during the growing season. Monitor priority blocks (e.g. those with a high fruit load or with a history
of pest or disease problems) more frequently. Divide large blocks into sub-blocks. On each sampling, select at least several rows within each sub-block in a semi-structured way. Sample different rows on each occasion, and combine detailed tree inspection with identification of infestations as soon as possible.

In larger groves, driving slowly down rows makes it possible to detect only high populations of pests and diseases that have already caused a significant level of damage or, in the case of black scale, produced a significant amount of honeydew. (Remember, though, that even when sooty mould is highly visible, it does not necessarily indicate active scale infestations.) Monitoring from a vehicle will also detect only advanced symptoms associated with severe root or limb disease, pesticide injury or nutrient imbalance.

Assessing individual trees is important for early detection of pests and diseases. Within the monitored rows, examine at least one tree in detail. Choose trees in a structured way so that, for example, you check a tree in the first third of the first checked row, then one in the middle third of the second checked row, and one in the last third of the third checked row. The position of the checked tree within the row in each sub-block should change with each visit. For example, the next time, check a tree in the second third of the first checked row, then one in the last third of the second row and so on.

Carefully examine individual trees from all sides and at all heights using a systematic approach. Inspect samples of twigs, flowers and fruit for the presence of pests,
diseases or damage using a 10× hand lens (if you find hand lenses difficult, you can use a magnifying glass, but be aware that their magnification and therefore the quality of the observations are inferior). Inspect trees for abnormal flower buds, and check for the presence of thrips by beating flower clusters onto a white background such as cardboard. Inspect fruit for the presence of fruit fly or other damage, as well as for symptoms of disease or deformity.

If scale or lace bug is detected, the life stage(s) should be assessed. Examine scale infestations carefully under magnification to determine the stage of scale development and the level of parasitism. Turn over adult scales to check for developing eggs or crawlers.

If a pest or disease is detected, check surrounding trees in the row and in adjacent rows to establish the extent of the infestation. Make note of the pattern of infection, which is the association of the disease or pest with:

- terrain (e.g. sheltered or exposed locations, low-lying areas)
- weather and aspect (e.g. prevailing wind direction, orientation to sun)
- tree characteristics (e.g. cultivar, tree age, part of tree affected)
- cultural practices (e.g. irrigation, fertilizers, pesticides, pruning, mulching).

Identification of disease pathogens is often more difficult, and if the symptoms are unclear, send specimens to a qualified plant pathologist for diagnosis.
Recording data

Record date, tree identification and position, pest or disease name, extent of damage, pattern of infection, life stage and any parasitism. Records of pesticide applications, cultural practices and weather greatly help in interpreting monitoring data.

Action thresholds

Action thresholds are the levels of pests, diseases or damage at which a decision is made about the action to be taken; they normally take into account natural enemy activity. The decision also needs to take into account previous experience, predicted weather, projected yield and market prices, and grower preference.

Unfortunately, no detailed action thresholds (requiring detailed research) have been determined for major olive pests in Australia, although they have been made for some of the same pests or diseases in different crops, or for olives grown overseas.

Once action is taken, follow up on its results by further monitoring, and by postharvest assessment of fruit and oil yield and quality.
Using this guide

The pests, diseases and disorders are separated into 3 sections. Use the table below to determine the possible causes of symptoms on your tree; the pest, disease or disorder can then be found alphabetically in the specific section based on common name.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Common name of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pest</td>
</tr>
<tr>
<td>Leaf yellowing & branch dieback</td>
<td>Black scale</td>
</tr>
<tr>
<td></td>
<td>Armoured scales</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf spots & damage</td>
<td>Lace bug</td>
</tr>
<tr>
<td></td>
<td>Weevils</td>
</tr>
<tr>
<td></td>
<td>Grasshoppers</td>
</tr>
<tr>
<td></td>
<td>Lt-brown apple moth</td>
</tr>
<tr>
<td></td>
<td>Rutherglen bug</td>
</tr>
<tr>
<td>Leaf/branch tip deformation</td>
<td>Olive bud mite</td>
</tr>
<tr>
<td></td>
<td>Black scale</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit damage & rot</td>
<td>Fruit fly</td>
</tr>
<tr>
<td></td>
<td>Armoured scale</td>
</tr>
<tr>
<td></td>
<td>Green vegetable bug</td>
</tr>
<tr>
<td></td>
<td>Olive fruit caterpillar</td>
</tr>
<tr>
<td>Flower damage</td>
<td>Thrips</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem damage, galls & bumps</td>
<td>Cicadas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem cankers & death</td>
<td></td>
</tr>
<tr>
<td>Root rotting & damage</td>
<td>Weevils</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree blackening</td>
<td>Ants, Black scale</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Beneficial species

In this guide, we have used the term *beneficial species* to describe the natural enemies of olive pests that may be observed in olive groves, and that give some level of biological control of the pests. These beneficial species may be either native or exotic, and a number occur naturally in groves. In such situations, they can be conserved and encouraged by environmental modifications, such as the planting of nectar- and pollen-producing cover crops (which can bring negative benefits: see Thrips, p 35) and the reduction in use of broad-spectrum pesticides. Several beneficial species are mass-reared in Australia and are available for purchase (see Australasian Biological Control, www.goodbugs.org.au).

Host-specific natural enemies are discussed and illustrated along with their host pests. Many of these natural enemies are small (<2 mm) parasitic wasps (known as micro-Hymenoptera) in the superfamily Chalcidoidea, particularly in the families Aphelinidae, Chalcididae, Encyrtidae and Pteromalidae. Most members of these diverse families parasitise small arthropods, including scales, aphids and insect eggs. Larger wasps found in groves belong primarily to the families Braconidae, Ichneumonidae and Sphecidae, which prey on larger insects and spiders.

A number of species of ladybirds (family Coccinellidae) are also found in olive groves. Both immature (larval)
and adult ladybirds eat soft-bodied insects. Two of the most common species are *Cryptolaemus montrouzieri* and *Hippodamia variegata*:

- *Cryptolaemus montrouzieri*, known as the mealy-bug destroyer, is a native species commonly found on trees infested with scale insects and honeydew.
- *Hippodamia variegata*, known as the white collared or spotted amber ladybird, is a European species. It was first recorded in Australia in 2000, and is now common and widespread. *H. variegata* feeds on aphids, thrips and insect eggs.

Other common predators are spiders, lacewings (see Olive Lace Bug, p 30) and larvae (maggots) of hover flies (family Syrphidae). While these species eat a range of arthropods, their role and impact in olive ecosystems is yet to be fully determined.

Above: Larva of the ladybird *Cryptolaemus montrouzieri*
L: Adult ladybirds *Hippodamia variegata*
L: Adult syrphid hover fly R: Larva of the syrphid hover fly

Leafcurling spider *Phonognatha graeffei* in olive tree
Invertebrate pests

Ants (Hymenoptera: Formicidae)

Many species

Size 3–12 mm

Biology and damage Ants do not cause any direct damage to olives, but disrupt biological control of black scale (p 19). Ants enter the tree canopy searching for honeydew secreted by the scale and interfere with predators and parasites, thereby favouring the development of black scale infestations. In some cases, larger species of ants in foliage can be a source of annoyance for grove workers.

Natural enemies None significant.

Comments Baiting has been successful in other orchard crops.

© Qld DPIF
Armoured scales (Hemiptera: Diaspididae)

Red scale, *Aonidiella aurantii* (most common)
Oleander scale, *Aspidiotus nerii*
Ross’s black scale, *Lindingaspis rossi*
Circular black scale, *Chrysomphalus aonidum*
Parlatoria scale, *Parlatoria oleae*

Size 2 mm

Biology and damage Armoured scales are most common in Queensland and WA. There are two to six generations per year. First-generation crawlers normally emerge in late spring. Hot, dry weather reduces the survival of crawlers.

Scales infest leaves and twigs and, sometimes, fruit. No honeydew or associated ants (p 19) or sooty mould (p 51) occur. Can cause fruit marking or pitting and scale-encrusted fruit. Leaf fall and twig dieback can occur in severe infestations.

Major natural enemies Small parasitic wasps, including *Aphytis melinus* and *A. lingnanensis*, both of which are mass-reared and commonly released into citrus orchards; wasps *Comperiella bifasciata* and *Encarsia* spp.; ladybirds, lacewings and predatory mites.

Comments Sprays need to be targeted at crawlers and young nymphal stages.
L: Red scale infestation on mid-vein of olive leaf
R: Red scale infestation on leaves and fruit of ‘Jumbo Kalamata’

L: Parlatoria scale infestation on underside of leaf
R: Red scale infestation on olive fruit

L: Armoured scale parasite *Comperiella bifasciata* with red scale. Note wasp emergence hole
R: Red scale parasite *Aphytis melinus* with red scale
Black scale, *Saissetia oleae* (Hemiptera: Coccidae)

Size 3–5 mm

Biology and damage Two or three generations occur per year. Widely distributed in Australia. First-generation crawlers normally emerge in late spring. Hot, dry weather reduces the survival of crawlers.

Scales attack leaves and twigs, resulting in leaf drop, reduced tree vigour and twig dieback in heavy infestations. Ants (p 19) and sooty mould (p 52) are commonly associated with the production of honeydew by adults and nymphs of black scale.

Major natural enemies Small parasitic wasps such as *Metaphycus* spp. and *Scutellista caerulea*; ladybirds (Coleoptera: Coccinellidae), lacewing larvae (Neuroptera) and the scale-eating caterpillar *Catoblepma dubia*.

Comments Sprays need to be targeted at crawlers and young nymphal stages.

L: Young adult female scales. Note H-shaped ridge on back
R: Adult scale on leaves
L: Adult female scale with eggs
R: Black scale adults with emerging crawlers. Note wasp *Scutellista caerulea* (parasite and egg predator) on right

L: Adult *Scutellista caerulea* (parasite and egg predator) near black scale adult
R: Cocoon of the scale-eating caterpillar *Catoblemma dubia*. Note black scale cases on the cocoon

Parasite *Metaphycus helvolus*
Cicadas (Hemiptera: Cicadidae)

Various species, particularly bladder cicada, *Cytosoma schmeltzi*

Size 30–40 mm

Biology and damage Cicadas have been recorded in central Queensland laying large numbers of eggs into olive twigs, causing severe damage. The females slit the twigs and insert rows of eggs. The emerging nymphs cause further damage before moving to the soil, where they feed on plant roots for several years. Adults emerge in spring to summer.

Cicada oviposition damage to woody twig

© Qld DPIF
Fruit flies (Diptera: Tephritidae)

Queensland fruit fly (QFF), *Bactrocera tryoni*, in NSW and Queensland
Mediterranean fruit fly (medfly), *Ceratitis capitata*, in WA

Size Adults: QFF, 6–7 mm ; medfly, 4–5 mm

Biology and damage Female flies lay eggs in ripening fruit, causing small piercing marks. Larvae may develop in fruit. Damaged fruits may prematurely ripen or fall, and are predisposed to fungal fruit rots.

Natural enemies Braconid parasites (Hymenoptera: Braconidae), the assassin bug *Pristhesancus plagipennis* and birds, although these rarely achieve economic control. Sterile insect release is used against QFF in south-western NSW, Victoria and SA.

Comments Commercial lures are available for both QFF and medfly. However, these target males and are not effective for direct control.
Grasshoppers (Orthoptera: Acrididae)

Plague locust, *Chortoicetes terminifera*
Spur-throated locust, *Austracris guttulosa*
Migratory locust, *Locusta migratoria*
Wingless grasshopper, *Phaulacridium vittatum*

Biology and damage Plague locust is the most devastating of the locusts, although wingless grasshopper can be a serious olive pest in southern and western Australia. In the non-swarming phase, grasshoppers feed primarily on terminal leaf margins, but the locust phase devours most green plant material, stripping trees rapidly.

Comments During plagues, immediate action is essential. Permits for pesticide use are normally issued in locust plague outbreak years.
Green vegetable bug, *Nezara viridula* (Hemiptera: Pentatomidae)

Size 15 mm

Biology and damage This large stink bug damages fruit by piercing with its mouth parts. Immature nymphs are commonly gregarious (found in groups), and are dark-coloured with lighter white, yellow and orange spots.

Natural enemies A small egg parasite wasp, *Trissolcus basalis*, has been introduced and is well established in many districts.

R: Green vegetable bug adult (top centre) and nymphal stages

L: Green vegetable bug egg parasite *Trissolcus basalis* with vegetable bug eggs
Lightbrown apple moth, *Epiphyas postvittana* (Lepidoptera: Tortricidae)

Size Adult wingspan 18 mm

Biology and damage Lightbrown apple moth (LBAM), *Epiphyas postvittana*, is a native species of leafroller with a wide plant host range. It damages growing tips or inflorescences of olives, tying them together with silken threads to form a protected area within which it feeds.

Natural enemies Various parasitic wasps, including the minute egg parasites *Trichogramma* spp. LBAM is susceptible to the bacterial pathogen *Bacillus thuringiensis*.

Comments *Trichogramma carverae* and *Bacillus thuringiensis* are commercially available.

Above: Adult male LBAM

Above: LBAM larvae L: *Trichogramma* wasp
Olive bud mite, *Oxycenus maxwelli* (Acari: Eriophyidae)

Size 0.1–0.2 mm

Biology and damage Bud mite was first detected in NSW in 2000. The mites feed on developing buds, shoots and leaves, causing malformations and shortening of internodes between young leaves (‘witch’s broom’ effect). Most severe in young trees under conditions of warm temperature and high humidity.

Natural enemies Likely to be attacked by predatory mites (family Phytoseiidae) and small ladybirds (e.g. *Stethorus* spp.).
Olive lace bug, *Frogsattia olivinina* (Hemiptera: Tingidae)

Size Adults 3 mm

Biology and damage An Australian native species recorded in NSW, Queensland, Victoria and SA. Adults are mottled brown. There are two to four generations per year. Spiny nymphs occur in clusters on undersides of leaves; the first generation commonly emerge from leaves in spring. All stages attack leaves with piercing mouthparts, causing yellow spotting. Black tar spots occur on undersides of leaves. Leaf drop and twig dieback may occur in severe infestations.

Natural enemies Few have been recorded; green lacewings have been observed predating on lace bug nymphs, and birds may also be predators.

Comment The native green lacewing *Mallada signata* is commercially available.

L: Olive lace bug damage to leaves
R: Female olive lace bug and feeding and oviposition marks

© NSW DPI © UWS
L: Olive lace bug adult with 5 nymphal instars
R: *Mallada signata* adult

L: Green lacewing egg
R: *Mallada signata* larva predating on lace bug nymphs
Olive fruit caterpillar, *Cryptoblabes* sp. (Lepidoptera: Pyralidae)

Size Adult 15 mm wingspan

Biology and damage An unidentified species of *Cryptoblabes* has recently been recorded feeding on fruit in southern Queensland. The moth, which probably migrates from neighbouring cereal crops, lays eggs, which hatch into larvae that feed on the surface of fruit, producing webbing and frass (faeces).

Comments Unlikely to be a problem unless olives are located near cereal crops such as sorghum.

Cryptoblabes damage to immature olives. Note brown frass
Rutherglen bug, *Nysius vinitor*
(Hemiptera: Lygaeidae)

Size Adult 5 mm

Biology and damage Commonly breeds on weeds, especially developing seeds. Occasionally reaches plague numbers in spring and summer and may swarm onto trees. Heavy feeding can cause severe damage with scorched appearance of leaves and death of twigs.

Generally of minor importance, although may be prevalent in some districts in favourable seasons.

Comments Closely related species with similar habits include grey cluster bug *Nysius clevelandensis*, coon bug *Oxycarenus arctatus*, and cottonseed bug *O. luctuosus*.

Adult (L) and nymph (R)

© NSW DPI © NSW DPI
Snails (Mollusca: Gastropoda)

Snails, including the small brown snail *Microxeromagna vestita* and the while Italian snail *Theba pisana*, are a problem in some areas of SA and WA. They appear to cause limited feeding damage, but they rest in trees, smothering trunks and branches, and occasionally causing broken limbs from their weight. In SA they move off trees in autumn and are not present during the critical harvest period, when they could contaminate the fruit.

White snails on olive tree
Thrips (Thysanoptera)

Plague thrips, *Thrips imaginis*
Western flower thrips, *Frankliniella occidentalis*

Size
- *T. imaginis* fem. 1.0–1.3 mm, male 0.8–1.0 mm
- *F. occidentalis* fem. 1.4–1.8 mm, male 0.9–1.1 mm

Behaviour and damage Thrips are small, elongated insects. Adults range in colour from yellow to mid-brown. Larvae are white or cream and wingless. Both species have been recorded in olive flowers, but plague thrips is the more common in flowers and on sticky traps in groves. Thrips commonly feed on understorey weed flowers in the grove or in nearby fields, swarming between spring and autumn. Flower infestations have been implicated in scarred and misshapen fruit.

Natural enemies Predatory thrips and predatory mites (Acari: Phytoseiidae) may attack thrips larvae.

Comments Predatory mites (e.g. *Eusius montdorensis*) are being developed commercially for use in greenhouse crops against *F. occidentalis*. Field use is doubtful.
Weevils (Coleoptera: Curculionidae)

Curculio beetle, apple weevil, *Otiorhynchus cribricollis*, in inland NSW, SA & WA
Garden weevil, *Phlyctinus callosus*, mainly in WA

Size
Otiorhynchus cribricollis, 9 mm
Phlyctinus callosus, 7 mm

Biology and damage Adults are nocturnal and flightless, and climb trees to chew leaf margins. Severe infestations can damage growing tips, especially in young trees. The soil-dwelling larvae (legless grubs) may damage tree roots.

Comments An effective alternative to insecticide application to butts of trees is the use of either a sticky or a fibrous barrier applied to the tree trunk. In the latter case, garden weevils in particular become enmeshed in the fibres.

Poultry such as guineafowl have been reported to contribute to garden weevil control in orchards and vineyards.

L: Weevil damage to olive leaves
R: Adult *Otiorhynchus cribricollis*
L: Adult *Phlyctinus callosus* R: Weevil larva

L: Weevil barrier applied to tree trunk
Diseases

Anthracnose

Cause Fungus: *Colletotrichum acutatum*, *C. gloeosporioides*

Symptoms Causes soft circular rots on the fruit, usually on the shoulder, and at high humidity produces an orange slimy mass of spores on the fruit surface. Commonly seen close to harvest when fruit softens.

Transmission Survives on infected mummified fruit. Spores are spread by rain splash and wind. Can infect ripe fruit and form new spores within 4 days.

Favoured by Wet conditions with high humidity.
Charcoal rot

Cause Fungus: *Macrophomina phaseolina* (also called *Rhizoctonia bataticola*)

Symptoms Plants die back from the shoots, and leaves drop. Infected roots appear grey and are dotted with tiny (pinhead-sized) black sclerotia, which are survival structures of the fungus. Severely affected roots blacken and rot away.

Transmission Soilborne. This fungus survives in soil for many years and can infect roots and stems of a wide range of plants. It spreads in irrigation water and infected soil on farm machinery.

Favoured by Warm and dry soils. Leaf symptoms develop when plants are heat stressed.
Crown gall

Cause Bacterium: *Agrobacterium tumefaciens*

Symptoms Forms swellings and galls on stems and roots near soil level. Galls start as small, pale lumps of tissue, which enlarge, darken and become convoluted. Galls can vary considerably in size. Can be confused with olive knot galls (p 43). Trees may become unthrifty.

Transmission The bacteria live in soil and infect plants through wounds. Infected cells receive a cancerous factor from the bacteria, which causes them to divide uncontrollably and thus form the galls. The bacteria infect a wide range of plants, particularly woody perennials.

Favoured by Continued in-ground planting of susceptible hosts. More prevalent on young nursery stock. Wounding by grafting, budding, cultivation etc. provides entry points for the bacteria.

L: Galling at soil level on potted olive tree
R: Galling on lower roots of olive seedling
Leaf mould

Cause Fungus: *Pseudocercospora* (= *Cercospora* = *Mycocentrospora*) *cladosporioides*

Alternative names Cercospora leaf mould, olive leaf spot, cercosporiosis

Symptoms Grey mouldy blotches develop on the underside of the leaves. The tops of the leaves turn yellow then brown, then leaves fall. Often occurs together with peacock spot, causing significant defoliation and damage to new growth and reduced crop production. Fruit are rarely infected, but, if so, show round, reddish-brown spots.

Transmission Overwinters in old infected leaves. Usually infects in autumn, targeting the young spring growth.

Favoured by High humidity and rain, 12–28 °C.

L: Grey mouldy blotches on underside of yellow to brown leaves
R: Mouldy appearance from fungal spores
Nematodes

Root knot nematode, *Meloidogyne* sp.
Citrus nematode, *Tylenchulus semipenetrans*
Root lesion nematode, *Pratylenchus* spp.

Symptoms Vary from unthriftness to stunting and leaf yellowing. Root knot nematodes cause distinctive root galling.

Transmission Soilborne organism, spread with movement of soil, water and infected plants.

Favoured by Soil that previously grew host plants. For example, citrus and root lesion nematodes are common in old citrus land, and root knot nematode is common in old vegetable soil. Damage would be expected to occur with high populations.

Root galls caused by root knot nematode
Olive knot

Cause Bacterium: *Pseudomonas savastanoi pv. savastanoi*

Symptoms Rough galls or swellings of variable size occur on twigs, branches, trunks, roots, fruit or leaves. Galls can appear either singly or close together. They are most common on twigs and young branches, but will also form around wounds on the main trunk. Starting as small swellings 3 to 5 mm across, they grow rapidly into smooth, spherical green knots, increasing in size as they mature and becoming darker and more furrowed.

Transmission The bacteria live in the galls and ooze out in wet weather. They enter the tree through wounds, including leaf scars, damage by hail and frost, pruning wounds or wounds caused during harvesting.

Favoured by Trees at most risk are those with wounds during periods of rain. Some cultivars are more susceptible, e.g. ‘Barnea’, ‘Frantoio’.

Note Olive knot has not been detected in all states. If you see symptoms, notify your state agriculture dept.

Above L: Young and older galls on olive branch
Below L: Galling around wound
R: Bacteria inside olive knot
Peacock spot

Cause Fungus: *Spilocaea oleagina*

Alternative names Olive leaf spot, bird’s-eye spot

Symptoms Round spots from 2 to 10 mm in diameter on the upper surface of the leaf, and occasionally on stems and fruit. Spots first appear as small pale blotches, later becoming muddy green to black, often with a yellow halo. Spots on underside of leaves are grey. Severe infection may cause defoliation, which can kill new wood and reduce production in the following year. Young leaves may remain symptomless.

Transmission Fungus overwinters in old infected leaves. Spores germinate in free water and are blown or splashed onto the leaves. Movement between trees is limited.

Favoured by High humidity and rain. Usually occurs sporadically, particularly in wet weather in spring. Disease is inactive during summer.

Above L: Spots on upper surface of leaves, one with yellow halo
Above R: Early infection on leaves
R: Spots on fruit

© NSW DPI © SARDI
Phytophthora root rot

Cause Water mould: *Phytophthora* spp. (several species)

Symptoms Root and crown cankers that may extend up the trunk. Leaves wilt, yellow and may drop. Trees may die suddenly, or slowly decline over several years. Sudden death is common when stress is placed on the tree, such as during flowering, fruit development or hot weather.

Transmission Soilborne organism, spread by movement of soil, water and infected plants.

Favoured by Phytophthora root rot is consistently associated with excessively wet soils, clay-panning (p 50) or poor drainage. Care must be taken when using feral plants as rootstocks, as many grow in areas where *Phytophthora* is present in the soil.

L: Crown canker on 5-year-old tree
R: Severe rotting of roots and lower stem
Rhizoctonia root rot

Cause Fungus: *Rhizoctonia* spp.

Symptoms Roots turn brown, and outer bark may slough off. Black sclerotia (survival structures) may form on roots. Above-ground symptoms are similar to droughting, and include leaf tip death, defoliation and plant death.

Transmission Soilborne organism, spread by movement of soil and infected plants.

Susceptibility Young nursery plants are most affected. Healthy mature trees appear to be less susceptible. Several species of *Rhizoctonia* have been detected in olive roots, but it has not yet been determined whether all these species cause disease.

L: Browning of roots on olive seedling
R: *Rhizoctonia* sclerotia on roots

© SARDI
Verticillium wilt

Cause Fungus: *Verticillium dahliae*

Symptoms One or more branches wilt, usually early in the growing season. Dead leaves remain on the tree. Roots are repeatedly infected over several seasons and trees gradually die. Internal tissue of lower stems may darken as the fungus disrupts the ring of sap-carrying tissue under the surface. Olive cultivars vary greatly in susceptibility, and symptoms may not be seen for 4 to 8 years after planting. Another form of this fungus in Europe causes defoliation.

Transmission Soilborne. The fungus survives in soil for many years and can infect the roots of a wide range of plants. It can spread in irrigation water and infected soil on farm machinery and tools.

Favoured by Cool and moist soils when daytime temperatures range between 20 and 25 °C. Suppressed by higher temperatures. Common in land where alternate hosts (e.g. cotton, lucerne, brassicas) have been grown.

L: Mature tree with wilted branch
R: Young tree with wilted branch
Inset: Darkened ring of water-conducting tissue inside stem
Wound cankers

Cause Opportunistic wound invaders
Fungi: e.g. *Botryosphaeria* sp., *Pycnoporus coccineus* (white wood rot)
Bacteria: e.g. *Pseudomonas syringae*, *Ralstonia solanacearum*, *Xanthomonas campestris*

Symptoms Vary from slow decline of trees and tree death to localised cankers around wound sites with occasional branch death above infection. Can also cause brown staining of the vascular (sap-carrying) system.

Transmission All are wound pathogens. Can be borne by wind, water and soil. Most are common organisms that opportunistically infect through wounds.

Favoured by Wounds, wetness and high humidity causing moisture films around wound sites.

Top L: Entry of bacteria at pruning wound caused stem death
Bottom L: *P. syringae* causing localised wounds at leaf scars
R: Brown internal staining from *Ralstonia* infection
Disorders

Apical end rot

Alternative names Apical end desiccation, soft nose

Symptoms The apical (blossom) end of the fruit shrivels, mostly close to maturity. The internal flesh and pip may be blackened, either at the apical end only or throughout the whole fruit. Sometimes secondary fungal rots infect the shrivelled end.

Cause The cause is unknown. It may result from sudden changes in temperature and humidity, which produce partial dehydration of the fruit at the apical end. It has also been associated with calcium and boron deficiencies, and with changes in watering regimes.
Clay-panning & root plaiting

Clay-panning and root plaiting are disorders in root architecture that can lead to unthrifty plants that are subject to stress-related dieback and infections.

Clay-panning is caused by poor soil structure and ground preparation, whereby a hard layer of subsurface soil prevents roots from growing downwards. Affected trees may also be subject to temporary waterlogging, which can lead to further disorders and infections. Conversely, dry soil can exacerbate stresses, because plants cannot draw moisture from deeper in the soil. Trees may also be subject to blowing over in strong winds because of their poorly anchored root systems.

Root plaiting occurs when plants become pot-bound during their nursery production. Plants have reduced and weaker root systems, which allow environmental stresses to lead to various disorders and infections.

L: Clay-panning
R: Root plaiting
Sooty mould

Cause Fungi: *Capnodium* sp. (most common); also *Fumago, Scorias & Aureobasidium* spp.

The fungi are wind blown and attach to the honeydew excretions from sap-sucking insects, particularly black scale (p 22), but also aphids, mealybugs and psyllids.

Symptoms A black soot-like growth which can cover all surfaces of the plant. Severe infections can indirectly cause plant stunting and unthriftiness, as the soot coverage prevents sunlight penetration and thus photosynthesis by the plant.

Control To manage sooty mould, the insects producing the honeydew must be controlled.
Sphaeroblasts and oedema

Sphaeroblasts are knob-like growths up to 10 mm wide which protrude from stems. When they are cut open, a spherical lump of wood can be removed from the surrounding tissue. Their cause is unknown, and they commonly occur on the cultivar ‘Barnea’.

Symptoms of oedema are small, brown, corky growths up to 5 mm wide that form on the surface of stems or roots from enlarged lenticels (breathing holes in bark). They occur when high soil moisture causes excessive water uptake, which engorges the cells near the lenticels. These cells can rupture from the high water pressure, and the plant forms callus tissue in an effort to heal. When roots experience periods of high soil moisture, some tissue may also asphyxiate (because of reduced oxygen levels). Consequently, these roots are predisposed to infection by a range of minor pathogens or opportunistic invaders such as *Fusarium, Pythium* and various bacteria.
Stem death

Symptoms The stem of the plant dies a few centimetres above ground level. The base is generally healthy and new shoots will appear below the dead stem. Most common on young trees in their first and second years in the field.

Cause Unknown. Damage occurs to the young tree and allows entry of wound-invading bacteria and fungi (see Wound Cankers, p 48). Damage is often associated with cold temperatures, sun scald and herbicide, but in many cases the cause has not been determined.

L: Sun scald on young olive tree
Middle & R: Stem death on young olive tree

© NSW DPI © SARDI

© SARDI © SARDI
Tip death

Symptoms Ends of branches die for no apparent reason. Tip death appears to have no effect on the general health of the tree or its productivity. Branches can be removed if this is considered necessary for cosmetic purposes. Inspection of the stem below the dead tips is needed to determine whether the death has a specific cause which should be further investigated (see Wound Cankers, p 48). Root rot and trunk cankers can also cause tip death, and so should be investigated.
Miscellaneous leaf damage

There are many other symptoms seen on leaves that have no known cause. They may result from infection by biotic agents or from environmental or nutritional effects. Symptoms include white spotting, pale brown blotches, striping and yellowing, and dead tips.
Key olive pests & diseases not detected in Australia

There are many pests and diseases both of olives and other crops overseas that are potential threats to the olive industry. For example, *Phytophthora ramorum*, the cause of sudden oak death in California and Europe, can cause disease in some olive cultivars.

The following pests and diseases are of more immediate concern to the Australian olive industry.

Phytoplasmas

Phytoplasmas are small infectious agents usually spread by leaf hoppers. Symptoms include bushy growth, witch’s broom, chlorosis and deformation of leaves, flower abortion, bud failure, and formation of sphaeroblasts (p 52) with rosettes of shoots.
Viruses and virus-like diseases

At least 14 different viruses and several virus-like diseases are known to occur in olives overseas, and some have been detected in symptomless trees. While many viruses have been recovered from affected trees, there is often no proof that the virus causes the symptoms observed. They can be transmitted by soil-borne vectors such as nematodes, and by aphids and pollen. These viruses may already be present in Australia but remain undetected. All imported olives are currently tested for viruses.

Symptoms include deformed fruit, poor fruit set, reduced yield, leaf distortion, narrow twisted leaves, bushy growth, small leaves, bright yellow discoloration of leaves, chlorotic to yellow vein discoloration, defoliation and dieback.

The main viruses detected are Strawberry Latent Ringspot Virus, Olive Latent Ringspot Virus, Arabis Mosaic Virus, Cherry Leafroll Virus and Olive Latent Viruses 1 and 2.

Olive fly, *Bactrocera oleae* (Diptera: Tephritidae)

Size 5 mm long

Biology and damage Olive fly is the most important pest of olives worldwide. It is endemic to the Mediterranean and is established in Mexico and California. The female lays eggs in fruit, and developing larvae (maggots) feed on the olives, usually causing fruit drop. Mature larvae may pupate in the fruit or leave and pupate in the soil, where they overwinter. Fruit rot and lower oil quality are associated with damage. In the USA, olive fruit is required to be <1% infested for processing. If uncontrolled, olive fly can result in 100% loss of the table olive crop and 80% loss of the oil crop. It appears that olive fly has a preference for some cultivars, particularly large-fruited ones.

Olive fly adult on olive leaf
Olive fly is related to, and looks similar to, the Queensland fruit fly (p 25), but is smaller, has dark marks on its wing tips and has slightly different markings. It is attracted to a specific pheromone (communication chemical) that is different from those of both QFF and medfly, which is used to monitor it and as part of a control strategy. Control is difficult and costly.

Damage caused to olives by olive fruit fly larvae (below), and larva in fruit (bottom).
Olive moth, *Prays oleae* (Lepidoptera: Yponomeutidae)

Size Adult moth 6 mm long, 13 mm wingspan

Biology and damage Olive moth is widespread in Mediterranean countries and also occurs in Central and South America. The only host is olive. Adult moths are silvery grey, and have long antennae.

There are normally 3 generations per season. The first generation arises from eggs laid by overwintered adults on flower buds and flowers. Emerging caterpillars feed on pollen, anthers and female parts of flowers. Caterpillars of the second generation burrow into fruit and feed near the kernel, causing severe fruit damage and fruit drop. Those of the third generation feed on leaves. Reported crop losses are variable.

Control is achieved most commonly by pesticides. Pest presence (but not population size) is monitored by using a synthetic pheromone (sex attractant for male moths), or light or food traps. Pheromones are also being evaluated to manage olive moth by disrupting mating.
Diseases present in Australia but not yet detected on olives

Some diseases present in Australia on other crops have been reported as diseases of olives overseas, but have not yet been detected on olives in Australia.

Armillaria root rot

Cause Fungal: *Armillaria* spp.

Causes gradual decline and death. White to yellow fan-shaped mycelial mats are observed between the bark and wood.

Black root rot

Cause Fungal: *Thielaviopsis basicola*

Causes foot and root rot of mature olives, leading to tree decline.

Cause **Phytophthora fruit rot**

Water mould: *Phytophthora* spp.

Causes fruit rots, particularly in wet weather.
Glossary

Abiotic—Caused by non-living factors.
Beneficial organism—An organism that helps the crop.
Biological control—The use of living organisms to control pests or diseases.
Canker—Dead or diseased area on a branch or stem.
Chlorotic—Pale yellow.
Crawler—The juvenile stage of scale insects.
Defoliation—Loss of all leaves from a branch or tree.
Disease—Any adverse effect on plant growth and development. In this book we have used ‘disease’ to describe damage caused only by pathogens.
Disorder—Any adverse effect on plant growth and development from an abiotic cause.
Gall—An abnormal growth of plant tissue from proliferation of cell division, similar to callus tissue.
Honeydew—A sugary solution excreted by many sap-sucking insects.
Integrated pest and disease management—The combination of several strategies to control pests and diseases for maximum results with minimum drawbacks (p 9).
Larva—The juvenile stage of an insect; commonly used for caterpillars and grubs.
Lenticels—Natural pores or breathing holes in the outer layer of plant tissue.
Nymph—The juvenile stage of an insect in which the juvenile and adult look very similar.

Opportunistic—Making use of an opportunity that presents itself, rather than looking for a goal. Often used to describe an organism that infects plant material through wounds or damage inflicted by another cause, either abiotic or biotic.

Oviposition—The laying (positioning) of an egg (ovum).

Parasite—An organism that derives its nourishment from another organism without killing it.

Parasitoid—An organism that derives its nourishment from another organism and eventually kills it.

Pathogen—Any organism that causes disease, e.g. bacterium, fungus, virus.

Predator—An organism that catches others for food.

Pupa—The case-like intermediate stage of many insects between larva and adult, in which the insect develops.

Sclerotia—Small black resting bodies of a fungus which enable it to survive without the plant host.
Further reading

These books provide additional information on olive diseases (1, 2, 3) and insect pests and beneficial insects (4, 5). Books 1 and 2 are available through the Australian Olive Association. There are also many websites that provide good information on olive production and olive pests and diseases.

Index

action thresholds 14
Agrobacterium tumefaciens 40
anthracnose 38
ants 19
Aonidiella aurantii 20
aphids 51, 57
Aphytis lingnanensis 21
 melinus 21
apical end desiccation 49
apical end rot 49
apple weevil 36
Armillaria root rot 61
armoured scales 20, 21
Aspidiotus nerii 20
assassin bug 25
Aureobasidium 51
Austracris guttulosa 26

Bacillus thuringiensis 28
Bactrocera oleae 58
 tryoni 25
beneficial species 16
bird’s-eye spot 44
black root rot 61
black scale 19, 22, 23, 51
boron deficiency 49
Botryosphaeria 48
bud mite 29
calcium deficiency 49
cankers 48
Capnodium 51
Captolemma dubia 22, 23
Ceratitis capitata 25
Cercospora
 cladosporioides 41
 leaf mould 41
charcoal rot 39
Chortoicetes terminifera 26
Chrysomphalus aonidum 20
cicadas 24
circular black scale 20
circular rots 38
citrus nematode 42
clay-panning 50
Colletotrichum
 acutatum 38
 gloeosporioides 38
Comperiella bifasciata 21
corky growths 52
crown gall 40
Cryptoblabes 32
Cryptolaemus
 montrouzieri 17
cultural controls 9
curculio beetle 36
Cytosoma schmeltzi 24

economic injury 9
egg parasite 27, 28

Encarsia 21

Epiphyas postvittana 28

Euseius elinae 29

montdorensis 35

fibrous barrier 36

Frankliniella occidentalis 35

Froggattia olivinia 30

fruit caterpillar 32

fruit fly 13, 25

fruit rot 61

Fumago 51

galls 43

garden weevil 36

grasshoppers 26

green vegetable bug 27

Hippodamia variegata 17

honeydew 12, 17, 19, 22, 51

hover fly 17, 18

integrated pest & disease management 9

lace bug 30

lacewings 18, 21, 22, 30

ladybirds 16, 17, 21, 22, 29

LBAM 28

leaf damage 55

leaf drop 30

leaf hoppers 56

leaf mould 41

leaf spot 44

lightbrown apple moth 28

Lindingaspis rossi 20

Locusta migratoria 26

locusts 26

Macrophomina phaseolina 39

Mallada signata 30

mealybugs 51

medfly 25, 59

Mediterranean fruit fly 25, 59

Meloidogyne 42

Metaphycus helvolus 22, 23

Microxeromagna vestita 34

migratory locust 26

monitoring 10, 11

Mycocentrospora cladosporioides 41

natural enemies 9, 11
nematodes 42, 57
Nezara viridula 27
Nysius clevelandensis 33
 vinitor 33

oedema 52
oleander scale 20
olive bud mite 29
olive fly 58
olive fruit caterpillar 32
olive knot 43
olive lace bug 13, 30
olive leaf spot 41, 44
olive moth 60
Otiorhynchus
 cribricollis 36
Oxycarenus arctatus 33
 luctuosus 33
Oxycenus maxwelli 29

parasitic wasps 17
Parlatoria oleae 20
parlatoria scale 20
peacock spot 44
pesticides 6, 10
Phaulacridium vittatum 26
pheromone 59, 60
Phlyctinus callosus 36
Phytophthora 45, 61
 ramorum 56

root rot 45
phytoplasmas 56
phytotoxicity 9
plague locust 26
plague thrips 35
Pratylenchus 42
Prays oleae 60
predatory mites 21, 29, 35
predatory thrips 35
Pristhesancus
 plagipennis 25
Pseudocercospora
 cladosporioides 41
Pseudomonas
 savastanoi 43
 syringae 48
psyllids 51
Pycnoporus coccineus 48

Queensland fruit fly 25, 59

Ralstonia solanacearum 48
red scale 20
Rhizoctonia 46
 bataticola 39
root rot 46
root knot nematode 42
root lesion nematode 42
root plaiting 50
root rot 45, 46, 61
Ross’s black scale 20
Rutherglen bug 33

Saissetia oleae 22
scale 13, 19, 20, 22
sclerotia 39, 46
Scorias 51
Scutellista caerulea 22, 23
snails 34
soft nose 49
sooty mould 12, 51
sphaeroblasts 51, 56
spiders 18
Spilocaea oleagina 44
spores 38
spur-throated locust 26
stem death 53
Stethorus 29
sticky traps 11, 35
sudden death 45
sun scald 53
syrphids 17, 18

tar spots 30
Theba pisana 34
Thielaviopsis basicola 61
thrips 13, 35
Thrips imaginis 35
tip death 54
Trichogramma carverae 28

Trissolcus basalis 27
twig dieback 30
Tylenchulus semipenetrans 42

Verticillium dahliae 47
wilt 47
viruses 57

weevil barrier 37
weevils 36
western flower thrips 35
white wood rot 48
wilt 47
wingless grasshopper 26
witch’s broom 29, 56
wound cankers 48

Xanthomonas campestris 48